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A new technique is developed for solving the equations of two-phase fluid dynamics. 
This technique involves a semi-implicit differencing of the field equations and a variation 
of the Newton Gauss Seidel iterative method for solving at each time level the resulting 
system of algebraic equations. Although the technique can be applied to any of several sets 
of equations representing two-phase flow, including the two-fluid equations, numerical 
results are presented here for the drift-flux approximation in one dimension. Sign&ant 
advantages of the method are its stability, ease of programming for complicated flow 
networks, and ease of extension to problems in two or three dimensions. 

1. INTRODU~~ON 

Two-phase fluid dynamics has been described by several sets of equations ranging 
in complexity from a simple homogeneous equilibrium model to a very complicated 
two-fluid model involving a separate pressure for each phase [I, 21. The methods 
developed in this paper have been applied to both simple and complex models of 
two-phase flow. The immediate application of the present work is to the analysis 
of the safety of nuclear reactors. In the unlikely event of breach of the primary 
coolant system, a two-phase mixture of water and steam is ejected from the break. 
The central problem, then, is the prediction of the state of the fluid in the primary 
system as a function of time so that adequate cooling of the reactor core can be 
ensured. It is widely believed that an accurate prediction of the fluid state requires 
consideration of the relative motion of the vapor and liquid phases and consideration 
of certain nonequilibrium thermodynamic effects such as finite-rate phase change. 
Perhaps the simplest model capable of incorporating such effects is the drift-flux 
model, and we have chosen this model to demonstrate our method. 

In Section 2 of this paper we present the field and constitutive equations of the 
drift-flux model. Section 3 contains a description of difference techniques and iterative 
solution algorithms that have been used to solve these equations. In practice this 
solution procedure has proved to be stable and capable of generating solutions in 
problems where other schemes have failed. The method converges rapidly for 
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TWO-PHASE FLUID DYNAMICS 391 

reasonable error tolerances and is easily extended to two- or three-dimensional 
geometries. Section 4 contains numerical results illustrating the capabilities of this 
method for several representative problems. 

2. THE DRIFT-FLUX MODEL 

A. Field Equations 

The drift-flux field equations for a two-phase mixture consist of two mass con- 
servation equations, one momentum conservation equation, and one internal energy 
equation [I, 21. The internal energy equation is replaced in some formulations by an 
entropy or an enthalpy equation. In this paper, we utilize the following forms of 
these four partial differential equations: 

Mixture mass conservation 

aPm -g- + 2 (pmvm) = 0. 

Vapor mass conservation 

..& (apv) + & (oI@Vm) + g [ olpv(1 Frna) ‘lvr ] = r (2) 

Mixture momentum conservation 

g @mum) + $ (pmVm’) + g [ (’ - a~,“zaevr2] + g + pmg, + 7 = 0. (3) 

Mixture specljic internal energy conservation 

g (pmem) + t (p&&m) + 2 [ (’ - a) pz~~Vr(ev - ez) ] 

+P++P;[ 
ol(l - 4 VrCoc - Pv) 

Pm 1 = q 

Variables appearing in the above equations have the following meanings: 

pm mixture density 
pv vapor density (microscopic) 
pl liquid density (microscopic) 
a vapor volume fraction 
Vm mixture velocity 
Vr relative velocity between phases 
ev vapor specific internal energy 

(4) 



392 LILES AND REED 

et 
em 
r 
P 
gz 
7 
4 
TZ 
TV 
TS 

liquid specific internal energy 
mixture specific internal energy 
vapor production rate due to phase change 
pressure 
force of gravity in the z direction 
wall friction 
heat source 
liquid temperature 
vapor temperature 
saturation temperature 

The three temperatures listed above do not appear in Eqs. (l)-(4) but do appear 
in the constitutive equations below. They have been included in the above list for 
completeness. At present, we have written four equations for the seventeen variables 
listed above. The gravitational term g, is a function of only the independent variable z 
and does not depend on the state variables. We assume that gZ(z) is known from the 
geometrical configuration of the particular system under study. To effect closure, 
we must therefore specify twelve additional relationships among these variables. 
Two relationships may be obtained from basic definitions of mixture quantities. 
These dehnitions are: 

1. Definition of pm : 

pm = (1 - 4 pz + qb * (5) 

2. Definition of em : 

em = (1 - 4 pzez + qhb 
Pm 

(6) 

The remaining ten relationships are discussed in the following section. 

B. Constitutive Equations 

We refer to the ten additional relationships needed for closure of the system of 
equations as constitutive equations. A general form for each of these equations is 
presented below; specific forms used in our computations are presented in the section 
on numerical results. 

1. Thermal equation of state for the liquid. We assume that a relationship giving 
tbe liquid density as a function of pressure and liquid internal energy is available: 

pz = P~(P, eJ. 

This relationship must apply for a superheated as well as a subcooled liquid. 

(7) 
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2. Thermal equation of state for the vapor. The vapor thermal equation of state 
is analogous to that of the liquid: 

pv = PIP, 4. (8) 

This relationship must apply for both superheated and subcooled vapor. 

3. Caloric equation of state for the liquid. This equation is assumed to take the 
form 

TZ = TLP, 4. (9) 

We further assume that this relationship can be inverted to obtain 

et = edp, Tz). (10) 

4. Caloric equation of state for the vapor. The vapor caloric equation of state 
is similar to that of the liquid: 

TV = G(p, ev). (11) 

We again assume inversion is possible, yielding 

ev = e&s TV). w 

5. Wall heat source. The heat source term in the energy equation is assumed 
to be of the form 

q = hA(Tw - Te), (13) 

where A is the wall area, Tw is the wall temperature, and Tf is a fluid temperature, 
possibly T, or TV or some average temperature. The heat transfer coefficient h is 
obtained from correlations involving the fluid properties and the wall temperatures. 

6. Wall friction. The wall friction term takes the form 

7 = c(pmvm I vm l/20), (14) 

where D is the hydraulic diameter and c is a friction multiplier depending strongly 
upon the vapor fraction 01 and other fluid properties. 

7. Relative velocity correlation. We assume the existence of a relationship speci- 
fying the relative velocity in terms of the other state variables. This relationship 
will usually be strongly dependent on an assumed flow topology. 

8. Rate ofphase change. The rate of phase change I’must be specified as a function 
of the other variables. Various models employing equilibrium or nonequilibrium 
assumptions are possible. 

9. Saturation curve. A saturation curve of the form 

Ts = T,(P) 
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must be specified. The saturation temperature provided by this curve enters the phase 
change expression of item 8 above. 

10. A thermal constraint. The drift-flux field equations provide only a single 
mixture energy equation for the two specific internal energies ez and eV . An additional 
thermal constraint is necessary to partition the mixture energy into the liquid and 
vapor phases. A variety of such constraints is possible, the simplest of which is 
thermal equilibrium between phases. Another possibility is the assumption that 
either the vapor or the liquid is at saturation, depending upon whether vaporization 
or condensation is occurring. 

3. THE DIFFERENCE SCHEME 

The convective terms in Eqs. (l)-(4) have been written in a divergence or con- 
servation form. Because there are large sources and sinks of momentum in a nuclear 
reactor (pumps, orifices, etc.), we will not attempt to ensure that our difference 
schemes be rigorously conservative in the treatment of momentum convection. 
Therefore, we choose to rewrite Eq. (3) in a nonconservative form that is more 
convenient in our applications. Multiplying Eq. (1) by a, and subtracting from 
Eq. (3) yields the equation 

The finite-difference form of Eq. (15) exhibits certain simplifications over that of 
Eq. (3). We use Eqs. (l), (2), (4) and (15) throughout the following analysis. 

The mesh cell configuration and the labeling conventions for cell edges and cell 
centers are depicted in Fig. 1. The mass and energy equations are differenced over 
the mesh cells indicated by solid lines in Fig. 1; the momentum equation is differenced 
over the dashed mesh cells. This forms a staggered spatial difference scheme which 
has been used by many others for the solution of both single-phase [3] and multiphase 
[4, 51 problems. The resulting difference equations are 

I-I i-l/Z I i+l/2 i+i 

FIG. 1. Mesh cell labeling convention. 

(16) 
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. Llz(L Pm Ji+t L Pm Ji-+ I = c (17) 

(urn>:+1 - cum>; + (di”,t [ AZ ] 

+ ~pd;~~z 

Pi”,:’ - p;+1 1 
+ (P&+~ AZ ( 

(pmem)T+l - (pmem); + (pd&++ (fh>~T~ - QhedF-* (&YJ~ 

At AZ 

) d', I[ (1 - 4 PyJJ@v - ed &Jr+, 

(urn)F!i - (Urn)??: _ 
[ 

(1 - 4 pw4ev - 4 ur Q 
Pm Ii-j + “+’ [ AZ 1 

4 - d(Pl - Pv> 
+%i[ pm q+, - [ 4 - 4Pl - Pv) @ n 

pm rli-+l = q” 
(19 

In the above equations the superscripts n and II + 1 refer to time levels, At and AZ 
are mesh spacings in time and space, respectively, and AZ is assumed to be a constant, 
although this is not a fundamental restriction of the method. 

The above difference equations are semi-implicit. We note that the convective 
terms in the mass and energy equations, the pressure gradient term in the momentum 
equation, and the compressible work term in the energy equation all contain terms 
evaluated at the new time level. All other terms in these equations have been evaluated 
at the old time level, with the exception of the phase transition rate r, the wall 
friction term 7, and the wall heat source q. We have not indicated in Eqs. (16)-(19) 
the time level at which these three terms are to be evaluated. Each of these terms may 
be a complicated function of the fluid state. Once this function is specified, it is 
usually possible to evaluate certain parts at the new time. Because these terms 
represent important, if not dominant, source or loss mechanisms, it is usually advan- 
tageous to treat them in as implicit a manner as possible. The specific manner in 
which these terms have been evaluated in the present work is discussed in the section 
on numerical results. 

The degree of implicitness exhibited in Eqs. (16)-(19) has been deliberately chosen 
to meet several objectives. First, because the nuclear reactor safety problems to 
which this method will be applied involve a wide range of fluid velocities, from 
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sonic to far subsonic, we seek a method that is not limited by the classical stability 
condition (Y + c) dt/dz -C 1, where c is the sound speed. Numerical tests indicate 
that the method of Eqs. (16)-(19) possesses an approximate stability criterion of the 
form urn dl/dz < 1, provided that relative velocities ur are smaller than mixture 
velocities, so that time steps consistent with fluid velocities may be taken. Second, 
the above difference equations represent a near-maximum degree of implicitness 
consistent with a straightforward, easily programmed, and rapidly convergent 
solution strategy for the resulting system of nonlinear algebraic equations. Such a 
solution strategy is presented in the next section. Third, the low-order accuracy 
provided by this scheme is probably sufficient for reactor safety problems in which 
basic constitutive equations are imprecise. 

The above difference equations, with the addition of appropriate constitutive 
relationships, do not form a complete set of equations for the variables at all node 
positions. These difference equations must be supplemented by additional relationships 
among variables at the edges and centers of mesh cells. We use the following relation- 
ships, which produce a “weighted donor cell” difference scheme that is particularly 
stable (see [4, 51, for example): 

Pi++ = ( 
1 +>+*) pi + ( 1 -t+* ) pi+l ) 

“i+t = ( 
1 +F++ ) (Iii + ( 1 -t++ ) ai+l ) 

e,++ = ( 
1 + Pi+* e, + 1 - Pi++ ei+l ) - 

1 ( 1 

Vi = (IfPr) lTiw; + (1) vi++. 

(20) 

In the above equations, p and e stand for pm , pl , or pv and em , ez , or ev , as appro- 
priate. The variable o may be understood as either am or ur . The weighting parameter 
p, which varies between -1 and +I, can be selected in a veriety of ways. The 
specification p = 0 yields the more accurate but less stable central difference technique. 
On the other hand, if /3 is chosen as 

then full donor cell differencing is obtained. This technique is very stable but first- 
order accurate. A number of schemes representing compromises between central 
and full donor cell differencing are possible. 

4. THE SOLUTION PROCEDURE 

The difference equations (16b(l9) in conjunction with the donor cell relationships 
of Eq. (20) and the constitutive equations of Section 2B represent a nonlinear algebraic 
system of equations for all mesh variables at the new time level. We have developed 
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a new method, which we will call the Newton Block Gauss Seidel (NBGS) method, 
for solving this system of equations. The NBGS method is a variation of the Newton 
Gauss Seidel method discussed by Ortega and Reinboldt [6]. In theory, the method 
represents a primary Newton iteration on the original nonlinear system coupled 
with a secondary Block Gauss Seidel iteration for solving the linear system generated 
at each stage of the Newton iteration. The NBGS method, as implemented in this 
paper, involves a single step of the secondary iteration for each step of the primary 
one. A block inversion technique is used instead of the standard Gauss Seidel method 
because of the strong coupling that exists in the field equations. The phase change 
term I’ is one of the most important coupling terms in these equations, since it 
represents vapor production which can change the mixture compressibility by orders 
of magnitude and thus strongly affect the fluid motion. The block technique allows 
this dominant term to be computed in a more implicit manner than the Kachina [4] 
procedure. In the remainder of this section, we present a detailed description of how 
NBGS works in one dimension and an indication of how the technique can 
be extended to two or three dimensions. 

The NBGS technique can be divided into the following four stages. 

1. All equations, including both difference and constitutive equations, are linearized 
around the latest iterate values of the unknowns. 

2. All unknowns appearing in the difference equations, except iy, p, vm , and e, , 
are eliminated by using the linearized definitions and constitutive equations. This 
yields a linear system of equations for the four variables 01, p, urn , and e, at all mesh 
points. 

3. These equations are then used to generate new values for 01, p, ar , and e, at all 
mesh cells. In this process, some terms in the equations are evaluated using pressures 
at the old iterate. 

4. The remaining unknowns are determined from 01, p, urn, and e, by using the 
appropriate definitions and constitutive equations. We emphasize that the full 
nonlinear equations are used in this stage of the computation. 

The above choice of four fundamental unknowns, one for each partial differential 
equation, is not unique. We might, for example, have chosen to solve for two densities 
instead of pressure and vapor fraction. There are three reasons for the particular 
choice we have made here. First, the pressure may be a continuous function of 
distance across a contact discontinuity (a slug of liquid next to a vapor bubble), 
but the density is not continuous. Second, the pressure equation of state is a very 
sensitive function of the density for an all-liquid system. Thus, if density were a 
fundamental unknown small errors in the density would produce large errors in 
pressure. This leads to a less stable algorithm. Third, the thermodynamic relationships 
can be handled in a more straightforward manner if pressure and an energy or a 
temperature are availabie. 

We now give a detailed description of the NBGS technique. We demonstrate the 
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manner in which the first two stages of this technique are carried out by using the 
mixture mass conservation equation as an example: 

(21) 

We note that this equation is already linear in the new time variables (p&;+l 
and (vm)~$ . We want to replace the densities (pm):+’ in the above equation by the 
four fundamental unknowns listed above. We begin by using the definition of Eq. (5), 

pDl=u -4pz+q%, 

the thermal equations of state, 

(22) 

PZ = pd1-5 ed, (23) 
pv = Pv(Ps 4, (24) 

and a thermal constraint as discussed in Section 2B. Let us assume for definiteness 
that an equal-temperature assumption is used: 

TV = Tz. 

In this case it is also necessary to introduce the caloric equations of state: 

(25) 

ez = Q(P, Tz), (26) 

ev = e&, TV). (27) 

The above six equations, (22)-(27), determine the six quantities pm , pz , pv , ev , T,, 
and TV in terms of cy, p, and e, . Depending upon the form of the equations of state, 
this relationship is quite complicated. Because we want an analytic relationship 
between the density p m and the fundamental unknowns, we linearize these six 
equations and eliminate the five extraneous variables pz , pv , ev , Tz , and TV. For 
the moment, we indicate the point about which these equations are linearized by a 
tilde. The linear forms of Eqs. (22)-(27) are listed below: 

pm = /Kn + @v - p”z)(~ - 3 + (1 - apz 

pz = pr + 2 (p - p> + 2 (e, - 9, 

ah 

- 

Pv=I?vfag(P-PP)+,,v( 3 
I ah ev _ cvv) 

Tv = Tz , 

ev = & + % (p - j) + 2 (TV - s(,), 
V 

a + G - j% (28) 

(29) 

(30) 

(31) 

(32) 

(33) 
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The eight derivatives appearing in Eqs. (28)-(33) represent derivatives of the equation- 
of-state functions appearing on the right-hand sides of Eqs. (23), (24), (26), and (27). 
These derivatives are evaluated at the points ( fi, &) and ( fi, a,) as is appropriate. We 
now use Eqs. (31)-(33) and the additional assumption that pl = rf, to obtain the 
following relationship between e, and eV : 

agv 
aT, ez [ 

-z,-%(p-j)] =~[ev-~v-E$(p-j)]e (34) 

Inserting Eqs. (29) and (30) in Eq. (28), we obtain 

pm = pm + (/j;r - p”J(a - E) + (1 - Ei) [+- (P - $1 + ?j$ (el - 411 

Finally, we use Eq. (34) to eliminate eV in Eq. (35), giving 

pm = p”m + (p”v - /%)(m - &) + (1 - &) [+- (p - 5) + g (e, - ;,)I 

(35) 

(36) 

The above expression is a linear relationship between the mixture density and three 
fundamental unknowns 01, p, and e6. 

To complete steps 1 and 2 of the NBGS technique for the mixture mass conservation, 
we use Eq. (36) to eliminate the mixture density (pm)yfl appearing in Eq. (21). 
Introducing the superscripts k and k + 1 to indicate successive iterative approxi- 
mations to variables at the new time and evaluating the tilde quantities in Eq. (36) 
at the kth iterate, we obtain 

(pm): - (Pm); + KP$ - h)w+l - d? 

apvk aevk aTsk aezk + [(I _ Q) y + aik ($$ - - - __ __ apvk aevk 
ae, aT, ae, ap +ae,ap )I 

x (p:+l 

58 1/26/3-10 
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In the above equation we have used the convention that 

U”+l.k = uk 
7 

since it is always understood that we are developing successive approximations to 
new time quantities. This equation is a linear equation for the five quantities ~~.f+l, 
pF+l, (et):+‘, (v&i , and (v&Y: . By repeating the above procedure for the three 
remaining difference equations, we can obtain a complete set of linear algebraic 
equations for the four fundamental unknowns at all mesh cells. Because these 
equations are complicated but easily derived by following the procedures outlined 
above, we will not write them in detail here. 

We begin our description of the third stage of the NBGS technique by indicating 
in Fig. 2 the structure of the linear system derived as discussed above. In this figure 
we have ordered the mesh variables in a particular manner and have indicated all 
nonzero entries in the coefficient matrix by an X. It is clear from this figure that these 
nonzero entries can be grouped into a pattern of overlapping 5 x 5 blocks. Each 
of these blocks represents coefficients of unknowns associated with a single solid 
mesh cell (see Fig. l), including velocities at both ends of the cell. The equations 
of Fig. 2 that are identified with the velocities (the first and fifth equations of each 
block) are momentum equations; the remaining equations are mass and energy 
equations. We now note that the five unknowns for a given cell, say (u&+ , a(Z) pZ , 
e2 , and (Q& , are coupled only to the pressures in adjoining cells, in this case p1 
and p3 . Thus, if the pressures in adjacent mesh cells are held fixed, one can determine 

-x0x00 Vl‘ 

xxx xx a1 

xxx xx Pl 

xxx xx e1 

ooxoxloxoo v2 

xxxxx a2 

xxxxx p2 

x xx xx e2 

p 0 x 0 x 0 x 0 0 "3 

xxxxx x3 

x x x x x p3 

xxxxx e3 

0 0 x 0 IX10 x "4 

xxx 

FIG. 2. Structure of linear system for NBGS iteration. 
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the five fundamental unknowns associated with the current mesh cell by solving a 
5 x 5 linear system having the structure of a single block of the matrix depicted in 
Fig. 2. 

The third stage of the NBGS technique is performed in the following manner. 
A direction for sweeping the mesh is chosen; this direction can be varied in successive 
iterations if desired. All five variables associated with the first mesh cell are determined 
in the above manner using the previous iterate pressure in cell 2. Next, the cell 2 
variables are updated using the new pressure in cell 1 but an old pressure in cell 3. 
We note that the velocity on the boundary between cells 1 and 2 is updated twice, 
once with cell1 and again with cell 2. We continue this process until all fundamental 
variables in all cells have been updated. This completes the third step of the iteration. 

The fourth stage of the NBGS iteration proceeds in the following manner. Having 
obtained new values for the fundamental variables in the above manner, we complete 
the iteration by updating the remaining unknowns. This final procedure depends 
upon the precise form of the constitutive equations; in what follows we assume that 
an equal-temperature constraint has been imposed on the liquid and vapor. First, 
havingp and e, , we can obtain p1 and Tz from Eqs. (7) and (9). We then determine TV 
by setting TV = Tt and obtain eV from Eq. (12). With eV andp now available, we can 
determine h from Eq. (8). Determination of the remaining variables, such as ur , 
7, and P, is a straightforward application of the remaining constitutive equations. 
Having thus obtained new values of all the dependent variables, a test for convergence 
is made and another iteration is performed if necessary. 

We note finally that one simplification of the above procedure is possible. Because 
the momentum equations of Fig. 2 couple only a single velocity and two pressures, 
these equations can be used to eliminate the velocities from this set of equations in 
favor of the pressures. If this is done, a matrix equation having the structure shown 

xxxoxo 

xxxoxo 

xxxoxo 

oxoxxxoxo 

oxoxxxoxo 

0 :: 0 x x x 0 x 0 

oxoxxxoxo 

oxoxxxoxo 

oxoxxxoxo 

Ql 

Pl 

Cl 

02 

p2 

E2 

a3 

p3 

E3 

= 6 

FIG. 3. Structure of simplified linear system. 
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in Fig. 3 is obtained. This system is clearly block tridiagonal with 3 x 3 blocks. 
If the coefficient matrix M of Fig. 3 is factored as 

M=L+D+U, (38) 

where L and U are block lower and upper triangular matrices and D contains the 
diagonal blocks of M, then stage 3 of the NBGS iteration is equivalent to solving 
the equation 

(L + D) rk+l = (U) mk + 6, (39) 

where wis the vector of unknowns appearing in Fig. 3. The matrix (L + D) appearing 
in Eq. (39) is particularly easy to invert, involving only the inversion of the 3 x 3 
diagonal blocks at each mesh cell. 

It is, of course, possible to invert the full matrix M at each stage of the iteration 
by using a block tridiagonal matrix inversion routine. In this case, the technique 
becomes formally equivalent to a Newton iteration on a particular nonlinear system 
of equations. In more than one space dimension, or in a complicated flow network, 
however, the matrix M becomes more complicated and direct inversion becomes 
less feasible. The NBGS technique extends straightforwardly to two or three dimen- 
sions. In two dimensions, for example, the matrix M becomes block block tridiagonal 
with 3 x 3 blocks and can again be factored as in Eq. (38). The matrix (L + D) is 
again easily inverted by solving a 3 x 3 system for each mesh cell. 

In the present work, analytic fits to the steam tables are used for the thermal and 
caloric equations of state. The functions for p and e must be continuous but the 
first derivatives can be (and in the present version are) discontinuous at certain 
points. Some of the derivatives must also be nonzero if a solution is to exist for both 
the two-phase and single-phase situations. Here single phase means 01 = 0 or 01 = 1. 
For example, in the single-phase liquid case (CX = 0) the liquid density cannot be a 
constant independent of p and e, . However, realistic compressibility of the fluid 
and a thermal expansion based on the Keenan and Keyes steam tables [3] is sufficient 
to prevent the matrices from becoming ill-conditioned. Examination of the matrices 
shows that the system becomes ill-conditioned as p1 + pv . This corresponds to the 
situation close to or above the thermodynamic critical point and physically implies 
that one is trying to calculate a void fraction for a mixture of two indistinguishable 
materials. For the reactor systems that we have considered no problems occur since 
conditions are always below the critical point. 

One final note on the caloric and thermal equations of state should be made. 
Tabular equations of state can be used for the properties of the two phases. However, 
in a thermodynamic nonequilibrium code, pressure and temperature are not simple 
functions of one another when the phases coexist, as they are under a full-equilibrium 
assumption. Since an arbitrary degree of nonequilibrium (superheated liquid, for 
example) is to be allowed, an equation-of-state routine based on tabular data must be 
prepared to extrapolate beyond the range of the data if necessary. This is physically 
justified for moderate degrees of metastability and is one of the fundamental postulates 
of most nonequilibrium two-phase flow work [9]. 
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5. NUMERICAL RESULTS 

A wide variety of flow situations have been run successfully using the numerical 
methods described. While the problems have ranged from single-phase, one- 
dimensional flow in loops to three-dimensional, two-phase wave propagation, 
two simple one-dimensional examples are presented in this section. The first example 
is an oscillating U-tube manometer. This calculation demonstrates not only that 
kinematic shocks (contact discontinuities) do not disturb the solution procedure 
but that the drift terms can be used in a reasonably physical way to sharpen interfaces 
between liquid and vapor. The drift terms can have much the same effect as a flux- 
corrected transport procedure [IO]. The second problem described is the single- 
ended two-phase blowdown of a long straight pipe. The convergence test for both 
problems was based on a relative variation of pressure and velocity between successive 
iterations. We have typically used a convergence criterion of 10-3. For this criterion 
and the time step sizes indicated below, the average number of iterations for both 
problems was about two per time step. This is not unusual; a large number of other 
problems have been run with convergence tests of between lO-3 and 1O-4 on either 
pressure or pressure and velocity with an average iteration count ranging between 
one and three. 

A. The Manometer 

A U-tube manometer was modeled using ten 0.1-m cells. Seven of these cells 
were filled with liquid; the other three contained vapor. Figure 4 illustrates both 
the geometry and the initial void distribution for the problem. The initial pressures 
for cells 1 through 8 were calculated from hydrostatic considerations. The pressures 
in cells 9 and 10 were atmospheric, as was the pressure in the region outside of the 
manometer. The initial velocities were zero. This simulates a situation in which a 
pressure force is applied to the right-hand side of the manometer to force the liquid 
up on the left side. This force is then released at t = 0. For this problem, the phase 
change rate I’, the wall friction term T, and the heat source q were all set to zero, 
although the vapor equations of state were those of steam rather than air. 

The liquid thermal equation of state p1 = pr(p, r,) was the complete expression 

MANOMETER 

- ----- -- EQUILIBRIUM POSITION 

q 
INITIAL LIQUID 
DISTRIBUTION 

FIG. 4. Geometrical configuration for manometer problem. 
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(neglecting the graphical term) described in the steam tables by Keenan and Keyes [7]. 
A simple ideal gas equation of state was used for the vapor with a gas constant of 
330 (N m/KKg). Linear caloric equations of state were used for both the vapor 
and liquid, specifically 

ev = 667(T, - 273.) + 2.42 x 106, 

e, = 4434(T, - 273.) - 6.24 x 10-l. 

These represent crude approximations to the steam properties over a limited range of 
pressures and temperatures. 

A time step of 1 msec was employed for 1.5 set of real time. While larger time 
steps could have been taken, it was felt that it was desirable to see just how accurately 
the present type of Eulerian code could predict this problem. Runs were made both 
with a simple bubble rise drift model (Zuber and Hench [l 11) and with a homogeneous 
assumption (ur = 0). 

Figure 5 shows a comparison of the computed and analytic liquid velocities for 
one period of the manometer with the bubble rise drift model. Figure 6 illustrates 
how the employment of the drift-flux model can be used to sharpen interfaces. 
After 1.5 set the homogeneous run has suffered from noticeable diffusion while 
the run with drift retains a much sharper interface. These results show that this 
method is capable of producing reasonable results for problems in which interfaces 
are present. 

B. The Blowdown 

The second problem involves the blowdown of a single long constant-area pipe. 
The dimension and initial conditions approximate those of Edward’s pipe blowdown 
[12, 131. Specifically the initial subcooled liquid was at 503 K and 6.7 MPa. At t = 0 
the pressure at the open end of the pipe is set to atmospheric pressure while the 
fluxes at the closed end remain at zero. 

t (s 1 
FIG. 5. A comparison of analytical and computational results for manometer problem. 
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FIG. 6. A demonstration of the effect of drift on the sharpness of interfaces. 

For this problem the pipe was represented as 41 mesh cells with dz = 0.1 m. 
A constant time step of 0.1 msec was used to run out the solution. 

The thermodynamic equations of state used for the calculation were identical 
to those described for the manometer while the wall friction term was based on a 
suggestion by Hirt and Romero [14]. The flashing model is a Nigmatulin form 
proposed by Rivard and Torrey [15]. Specifically the phase change term is composed 
of an evaporation and a condensation term as indicated below: 

r, = h&“ol(l - ol)(ligasTs)“2 (Tv ; Ts) , 
s 

A, = 0.1, 7-t > Ts , 
= 0.0, T, -c Ts ; 

A, = 0.1, 7-v < Ts, 
= 0.0, Tv > Ts ; 

A = (+No~)~/~, a: < 0.5, 

= (gAyI - 01))23/, a: > 0.5. 

The N appearing above is the number of bubbles per cubic meter and is taken to be 
1.0 x IO’. The gas constant Rgas is set to 462. 

In the drift-flux code the phase change was expressed as 

where 
Ce = AnplncP(Rgas)1~2 and Cc = Anpv”(l - a>” (Rgas)‘/2. 
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When written in this form the phase generation rate is implicit enough to be stable 
and is self-limiting (i.e., if the void fraction is equal to 1 no more vaporization can 
occur). 

No formal break model was used in the code. Quantities at the pipe exit were 
donor celled so that the only variable outside of the pipe which appeared in the 
difference scheme was the ambient pressure. This same procedure has been used 
by Hirt and Romero [14] for similar calculations. Questions about the validity 
of this technique for two-phase choked-flow situations exist; but the lack of a well- 
defined, accurate choking criterion for two-phase flow makes the decision to include 
such a break model more difficult. The results obtained with the present codes for 
blowdowns have proved satisfactory thus far, at least with regard to matching 
experimental pressures. Figures 7 and 8 display typical results for the pipe blowdown 
pressures very near the two ends of the pipe. The runs represented were made in a 
homogeneous mode (or = 0) but other results with Zuber-Findley [16] slip correla- 
tions were in substantial agreement. 

I I I I I 1 
24- - DATA 

E 
A CODE PREDICTIONS 

u3- 
5 - 
22- 
E 
Q I- 

I 
0 100 200 300 400 500 600 

Urns) 

FIG. 7. Pipe blowdown pressure history at a point 0.168 m from open end. 
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FIG. 8. Pipe blowdown pressure history at a point 0.08 m from closed end. 
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6. CONCLUSIONS 

The NBGS technique has been applied to a wide variety of two-phase flow situations 
in both one- and three-space dimensions. It has proved to be reasonably accurate 
for the modeling purposes for which it was intended (a large systems code), but 
most important of all it has proved to be a more robust procedure than other solution 
strategies. 
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